Using BOINC to enumerate mutually orthogonal Latin squares

Gerdus Benadé, Alewyn Burger, Jan van Vuuren

Grenoble, 25 Spetember 2013

Latin squares

Definition (Latin square)

A Latin square of order n is an $n \times n$ square where every cell contains one of the symbols in the set $\{0,1, \ldots, n-1\}$ such that no symbol is repeated in any row or column.

2	1	0	3	2	0	3	1
0	3	2	1	1	3	0	2
3	0	1	2	0	2	1	3
1	2	3	0	3	1	2	0

Latin squares - Orthogonality

Definition

Two latin squares of the same order are orthogonal if, when superimposed, each of the possible n^{2} ordered pairs occur exactly once.

2	1	0	3		2	0	3
0	3	2	1	1			
3	0	1	2	1	3	0	2
1	2	3	0		3	2	1

Latin squares - Orthogonality

Definition

A set $\left\{L_{1}, \ldots, L_{k}\right\}$ of $k \geq 2$ latin squares of order n is orthogonal if any two distinct latin squares are orthogonal. We call this a set of k mututally orthogonal latin squares (k-MOLS) of order n.

2	1	0	3
0	3	2	1
3	0	1	2
1	2	3	0

2	0	3	1
1	3	0	2
0	2	1	3
3	1	2	0

0	1	2	3
1	0	3	2
2	3	0	1
3	2	1	0

Permutations and main classes

Permuting/re-arranging the rows, symbols and columns of a MOLS give a structurally similar MOLS.

Definition (Main class)

A MOLS, together with all its permutations, is called a main class.

Definition (Class representative)

Every main class has a lexicographical smallest element, called the class representative.

Enumerating main classes of MOLS

Problem

How many main classes of $k-M O L S$ of order n are there?
Approach: Count the class representatives

Enumerating main classes of MOLS

Problem

How many main classes of $k-M O L S$ of order n are there?

n	k								
	2	3	4	5	6	7	8	9	
3	1								
4	1	1							
5	1	1	1						
6	0	0	0	0					
7	7	1	1	1	1				
8	2165	39	1	1	1	1			
9	≥ 1	19							
10	≥ 1	$?$	$?$	$?$	$?$	0	0	0	

Table: The number of structurally different k-MOLS of order n for $n \in\{3,4, \ldots, 10\}$.

Enumeration algorithm - Universals

$<0,1,2,3>$

$<0,2,3,1>$

Enumeration algorithm - Universals

$<0,1,2,3>$
$<1,0,3,2>$

$<0,2,3,1>$

A partial MOLS needs certain properties.
$\mathbb{P}=\left\{\begin{array}{l}\text { Every square in } M \text { has to be 'Latin' } \\ \text { All pairs in } M \text { orthogonal } \\ \text { No 'smaller' partial MOLS in this main class }\end{array}\right.$

Enumeration algorithm - Example

Enumeration algorithm - Branches

Table: The number of branches on after every symbol for a 3-MOLS of order n.

	After universal					
n	1	2	3	4	5	6
3	1	1	1			
4	1	1	1	1		
5	2	4	2	2	1	
6	3	20	0	0	0	0
7	14	10529	3800	3	3	3
8	45	15948763	1546241258	18877734	216	168
9	269	2.89×10^{10}	8.48×10^{14}	2.68×10^{15}		
10	1700	1.21×10^{14}	2.42×10^{21}	-		

The number of nodes in the tree grows very quickly, making the complete enumeration for orders 9 and up difficult, if not impossible.

What next?

n	k							
	2	3	4	5	6	7	8	9
3	0							
4	0	0						
5	0	0	0					
6	0	0	0	0				
7	4	6	2	1	1			
8	$8 d$	$9 d$	$3 h$	$1 h$	$650 s$	$113 s$		
9		$\approx 14 y$						
10		$\approx 60 y$						

- Fix graphics, portability, GPU
- Test within our university network
- Public launch if feasible

Natural partition

Job size estimation

- Job size range from 1 second to 90000 (3-MOLS order 8) hard to provide accurate estimate and maximum fpops
- Workunits are too long, but there are too many to generate them on a deeper level. Enumerate partial subtrees using checkpoints as new workunits.

Starting points

Interactivity

Interactivity

Keep very little work on hand, use visualization to generate workunits on demand (suitable?).
Alternative: "Poll" to decide which area to explore next.
Should work best with shorter workunits, see the consequences of your choices

